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Abstract—Although arithmetic coding offers extremely high
coding efficiency, it provides little or no security as traditionally
implemented. We present a modified scheme that offers both
encryption and compression. The system utilizes an arithmetic
coder in which the overall length within the range [0,1) allocated
to each symbol is preserved, but the traditional assumption that
a single contiguous interval is used for each symbol is removed.
Additionally, a series of permutations are applied at the input
and the output of the encoder. The overall system provides si-
multaneous encryption and compression, with negligible coding
efficiency penalty relative to a traditional arithmetic coder.

Index Terms—Arithmetic codes, cryptography, data
compression.

I. INTRODUCTION

ARITHMETIC coding has been developed extensively
since its introduction several decades ago [1], and is

notable for offering extremely high coding efficiency. While
many earlier-generation image and video coding standards
such as JPEG, H.263, and MPEG-2 relied heavily on Huffman
coding for the entropy coding steps in compression, recent
generation standards including JPEG2000 and H.264 utilize
arithmetic coding [2], [3]. This has led to increased interest in
arithmetic coding both in the context of image coding, and also
more generally for other applications. While arithmetic coding
is extremely efficient, as Cleary et al. [4] and others have noted,
as traditionally implemented it is not particularly secure. The
issue of providing both compression and security simultane-
ously is growing more important given the increasing ubiquity
of compressed media files in a host of applications including
the Internet, digital cameras, and portable music players, and
the common desire to provide security in association with
these files. When both compression and security are sought,
one approach is to simply use a traditional arithmetic coder
in combination with a well-known encryption method such
as the Advanced Encryption Standard (AES). However, while
this will certainly meet both goals, it fails to take advantage
of the additional design flexibility and potential computational
simplifications that are available if the coding and encryption
are performed jointly.
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Traditional arithmetic coding provides essentially no security
in the face of a chosen plaintext attack, in which an attacker has
the ability to specify a sequence of input symbols and observe
the corresponding output, and to repeat this process an arbitrary
number of times. For example, in a binary system with two sym-
bols and , it is a simple matter to choose input sequences
that, in combination with their outputs, reveal the assumed prob-
abilities of each symbol in the arithmetic coder as well as the
order of the intervals. That information can then be used to de-
code any output from the encoder.

The issue of increasing the security of arithmetic coding has
received relatively little attention in the literature. Bergen and
Hogan [5] have considered the problem of inferring the under-
lying symbol probabilities and partitioning of the [0,1) interval
using observations of an arithmetic encoder output. Liu et al.
[6] presented a system using table-based bit sequence substi-
tutions to provide encryption during arithmetic coding. More
recently, a randomized arithmetic coding (RAC) system based
on random swapping of the two intervals in a binary arithmetic
coder was described by Grangetto et al. [7], [8], who utilized
this approach to encrypt JPEG 2000 coded images. The systems
in [7] and [8] modify the traditional arithmetic coder by ran-
domly permuting the intervals in accordance with a key-gener-
ated shuffling sequence. The shuffling sequence consists of one
bit per encoded symbol that determines whether the binary inter-
vals are swapped or not when encoding that symbol. The authors
of that paper were targeting applications to JPEG2000-encoded
images in which a potential attacker would not have access to
the original image nor be in a position to provide a particular
image to be encoded. Thus, robustness to plaintext attacks was
not a goal in [7] and [8]. Indeed, if an attacker of the RAC was
granted access to the RAC encoder, removed from the larger
JPEG2000 context for which it was designed, the number of
trials needed to determine an -bit shuffling sequence would
be on the order of , since the output pairs corresponding
to inputs that differ in exactly one symbol can be compared.
Such comparisons, however, would not reveal the underlying
key used to generate the shuffling sequence, so if care was taken
to modify the key or avoid reinitialization of the shuffling se-
quence in subsequent uses of the RAC encoder, substantially
higher robustness would result. In [9], we specifically consider
the goal of encryption, and describe an arithmetic coding (In-
terval Splitting AC) approach in which the intervals associated
with each symbol, which are continuous in a traditional arith-
metic coder, can be split according to a key known both to the
encoder and decoder. This removes the constraint that the inter-
vals corresponding to each symbol be continuous, and instead
uses a more generalized constraint that the sum of the lengths of
the one or more intervals associated with each symbol be equal
to its probability.
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Fig. 1. Block diagram of permutation-based system.

The present work aims to provide an arithmetic coding system
that is secure against a chosen plaintext attack. Interval split-
ting within the arithmetic coder and permutation steps at the
input and output are utilized to construct a system with security
that increases exponentially with the length of the shorter of the
input block size and the key sequence. While all of the methods
described here can be applied for coding of source alphabets
with any size, we address the case of binary systems here to
simplify the discussion and illustrations. The rest of this paper
is organized as follows. Section II introduces the secure system
based on interval splitting and permutation. Section III moti-
vates the system design by describing and analyzing the contri-
butions of each of its elements to overall security. Section IV
discusses implementation complexity. Section V shows experi-
mental results, and conclusions are contained in Section VI.

II. SYSTEM DESCRIPTION

Fig. 1 gives a block diagram of the secure arithmetic coding
system. The system consists of a first permutation step applied
to the input sequence, arithmetic coding using interval splitting,
and a second permutation step applied to the bits produced by
the coder. A key sequence is input to a key scheduler which in
turn provides key information to both permutation steps and to
the interval splitting arithmetic coder. The key scheduler utilizes
information from the split AC encoder output.

Thepermutationstepsinthissystemaresimilar totheShiftRow
Transformation in AES in that the rows of a block of data are
shifted cyclically. The main difference is that in the system of
Fig. 1 row and column shifts are shifted cyclically by different
amounts according to key values, in contrast to the corresponding
step in AES in which the shifts are predetermined [10].

A. Interval Splitting Arithmetic Coder

The actual compression is performed by the interval splitting
arithmetic coder. In an interval splitting AC, the intervals asso-
ciated with each symbol, which are continuous in a traditional
arithmetic coder, can be split according to a key known both to
the encoder and decoder. For example, in a binary system with
two symbols and and and , a tra-
ditional partitioning would represent by the range [0,2/3) and

by the range [2/3,1). In place of the constraint that the inter-
vals corresponding to each symbol be continuous, the coder uses
a more generalized constraint that the sum of the lengths of the
one or more intervals associated with each symbol be equal to
its probability. With reference to the example above, if symbol

is represented by the combination of the intervals [0,1/3) and
[2/3,1) and symbol by [1/3,2/3), the fundamental association

Fig. 2. Illustration of interval splitting.

in arithmetic coding between symbol probability and length in
the range [0,1) is obviously preserved. This can be viewed as
a generalization of the RAC method in [7], in the sense that it
results in a coder having intervals that have been both randomly
shuffled and split.

Traditional arithmetic coding can be viewed as an extension of
Shannon–Fano–Elias coding, and associates a concatenation of

symbols with prefix-free codewords of length no greater
than bits [11]. Alternatively,
if the prefix-free restriction is removed, codewords of length

can be used. For a given sequence length
and input probability distribution with cdf , the recursive
partitioning of [0,1) leads to a set of intervals ,

and their associated midpoints . The represen-
tation of is truncated to bits to give
which is guaranteed to lie in the appropriate interval.

When an interval is split, the longer of the subintervals must
be at least half as long as the presplit interval. Thus, a prefix-free
representation will require at most

bits (or when the prefix-free re-
striction is removed). In many cases, a representation shorter
than these bounds is available within the longer subinterval.
Alternatively and less commonly, the shortest representation
will lie in the shorter subinterval. The encoder has the flexi-
bility to pick the shortest valid codeword from either subin-
terval. Thus, the performance bound is one bit per -symbol
sequence larger than traditional arithmetic coding. In practice,
however, the bound for interval splitting is very loose, and the
average prefix-free code lengths typically range from 0.1 to 0.3
bits longer (for the entire sequence of symbols) than the
expected value of . Additionally, since the
length increase is absolute as opposed to relative, as sequence
length grows the efficiency penalty in percentage terms quickly
becomes negligible [9].

Fig. 2 illustrates interval splitting for the case where only
one input symbol is coded. Fig. 2(a) shows a traditional par-
titioning of [0,1) using an example where and

. A key can be used to identify where the
interval corresponding to symbol is to be split. The split
causes the portion of the interval to the right of the key to
be moved to the right of the interval as shown in Fig. 2(b).
When an input containing symbols is encoded, the key
becomes a vector where is the length
of the input symbol string. Keys are identified using binary
sequences, with the length of the binary sequence determining



KIM et al.: SECURE ARITHMETIC CODING 2265

Fig. 3. Input sequence permutation (N = 16).

Fig. 4. Output codeword permutation (N = 14).

the precision available in key selection. For example, if three
bits/symbol are utilized in key specification, the splitting will
occur at one of eight possible locations. In the work here we as-
sume that potential key locations are distributed evenly, though
that constraint could be removed at the cost of some increase
in complexity. Key positions are expressed in a normalized
manner over the range of potential split locations. For encoding
the first symbol, the key can lie anywhere on [0,1). For
all subsequent symbols, however, restrictions due to previous
splitting events reduce the range of eligible split locations.
Thus, a key value of, for example, , would identify a
split location at the center of the first half of the range of valid
key positions associated with the th symbol, but would not
generally lie at the absolute position 0.25. Further details on
the constraints involved in interval splitting and the diversity of
the interval orderings that can be generated are found in [9].

B. Permutations

The input permutation operates on the symbols of the input
sequence, and begins by raster-order mapping a sequence of
length into a block having four columns and rows.

After the mapping, two key-driven cyclical shift steps are ap-
plied, one operating on the columns and the other operating on
the rows. This is illustrated for the case in Fig. 3.
For input sequence , the first row becomes

, the second row becomes , etc.
The column shifts are specified by a key of length 4, with each
column undergoing a downward cyclical shift in accordance
with the key value associated with that column. The values in
the key lie in the range . The procedure is then
repeated, using a new key of length and with values in
the range [0,3], for each of the rows. The data are then read out
in raster order to obtain the permuted sequence.

The output permutation operates on bits produced by the
interval splitting AC. In contrast with the input permutation,
which utilizes one round of cyclic shifts on the columns and
then rows, the second permutation step uses two rounds as
illustrated in Fig. 4. Given an output sequence of length
bits, the last four bits are removed to give a sequence of length

. This shortened sequence is then subject to a round of
key-driven column and row cyclical shifts. The last four bits
are used for generating a key stream of the first round with
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TABLE I
RANGES OF KEY VALUES AND KEY SIZES FOR SHIFTS

IN PERMUTATIONS (N = d�N log p(B)e+ 2)

the input key sequence. Therefore, if the first bits are
the same but the last four bits are different, the result of the
first round is different. The last four bits of the sequence are
then reappended to the resulting block, which is then subject to
another round of column and row shifts. In the second round,
a permutation key is a function of only input key sequence.
In other words, the same key is used for all results of the first
round. The result is then read out in raster order.

The reason for handling the last four bits differently is to pre-
vent an attack from using the fact that input sequences that differ
only in their last symbols will produce outputs that differ only in
their final bits. In a straightforward permutation, this fact can be
used to make probabilistic inferences regarding the permutation.
However, since the final bits tend to differ even for very similar
input sequences, applying them separately in a first round of per-
mutation in the manner of Fig. 4 ensures that the resulting bit-
streams are very different even for very similar input sequences.

Table I gives the range of key values and key sizes of each
shift operation in the input and output permutation steps. The
output codeword length depends on the particular input se-
quence realization and lies in the range

where is the most probable symbol and is the least probable
symbol. For example, for the case , ,
and , the range of possible output codeword length
in bits is [10,28]. The upper bound of the range of codeword
length, , determines the range
and size of key.

The key scheduler utilizes a key sequence of length and
generates a sequence with a very long period using repeated XOR

operations through

for (1)

where is the th bit of the long-period key sequence and the
first bits are from the input key sequence. This can be im-
plemented in software by simple bit operations and in hardware
by using a Linear Feedback Shift Register (LFSR), and gen-
erates a binary sequence with a very long period of .
The long-period key sequence has the same entropy as the
bits used to generate it, and in fact any consecutive bits can
be used to obtain the corresponding bits of the input key
sequence. However, use of the long-period sequence prevents
keys used for interval splitting or permutation from having a

short period, making it more difficult to mount attacks using
periodic input sequences or the periodicity of the permutation
key. It should also be noted that while the foregoing discussion
is based on permutations using rows of four bits or input sym-
bols, rows of other sizes can be used as well. In general, for
a given input size, utilizing a permutation block chosen to have
approximately equal row and column dimensions will minimize
the permutation key length.

III. SECURITY

Assessing security can be challenging in any encryption
system because showing robustness against known attacks does
not preclude the existence of unknown attacks against which
the system may not be robust. This has been a longstanding
issue even with mature encryption standards such as AES,
which is currently considered secure but for which future
security cannot be guaranteed. As Courtois notes in [12], “Our
guess is rather that all the block ciphers with 256-bit keys that
were submitted to AES, will some day be broken faster than by
exhaustive search, simply because our current knowledge about
the real security of block ciphers is yet very low.”

In light of the inherent challenge to proving security, we adopt
an approach here that, as was done during the development of
AES, considers known attacks and ensures that they cannot be
used successfully. In the context of a secure arithmetic coder,
potential weaknesses lie in the ability to correlate the input
symbol stream with attributes of the output binary codeword
and to use those correlations to infer key information. The core
of the encoder, the Interval Splitting AC, when implemented
without any input permutation and codeword permutation, can
be attacked using carefully constructed sequences that reveal
split locations. When the input permutation is added, the task
of the attacker is complicated by the need to first determine the
permutation, and then to determine split locations. Information
about the input permutation, however, can be determined by
comparing the output for a chosen input string and the outputs
due to all other input strings that differ in only one symbol.
If, by contrast, an input permutation is not used but an output
permutation is used, then analysis of the relative ratios of zeros
and ones in output sequences associated with particular input
sequences can be used to get information regarding the key
sequence. Using both an input and output permutation thwarts
all of these attacks and gives a system which appears to be
secure. The following describes each of these attacks in more
detail and motivates the full system shown in Fig. 1.

A. Chosen Plaintext Attacks for Interval Splitting AC

One of the opportunities to attack a standalone interval split-
ting AC (i.e., with no permutations) lies in the recursive nature
of the splitting and encoding. This can be exploited by an at-
tacker controlling the number of symbols and the specific se-
quence of symbols to intelligently provide input sequences of
varying content and length and gradually gain information on
the keys used by the system.

To illustrate how an attacker could gain information by trying
different input sequences, denote an input symbol sequence by

and the binary number obtained upon encoding that sequence
using an interval splitting AC, without any permutations, by
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Fig. 5. Possible cases of locations of codewords whenA is split.

. Let refer to the intervals for prior to splitting,
and to the intervals for after splitting. For example, in
Fig. 2, indicates the interval marked as before splitting
as in Fig. 2(a), and indicates both of two distinct intervals
marked as after splitting as in Fig. 2(b).

Consider an interval splitting AC operating on a sequence of
symbols and using splitting key vector .

For clarity, we assume that when selecting a codeword for an
input sequence represented by two disjoint intervals as a result
of interval splitting, the encoder will always select a codeword
corresponding to a point in the larger of the two intervals. We
also assume that interval splitting is not done for the last input
symbol in a sequence as there is nothing further to encode.

If symbol is split, then after partitioning the two subinter-
vals of symbol for and , there are three possibili-
ties with respect to the locations of the codewords and

, as illustrated in Fig. 5. First, both and
could lie to the left of the contiguous interval for symbol .
This is shown in Fig. 5 as “case 1” and will occur if and only
if is split at an absolute position on [0,1) (in contrast with
the relative positions used in specifying keys ) satisfying

. In other words, the subinterval of
that is to the right of must be shorter than half of ,
thereby causing to lie to the left of . Second,

could be to the left of and to the right of
(case 2 in Fig. 5). This will occur if and only if the length of

the subinterval of that is to the left of is larger than
half of , and the length of the subinterval of that
is to the right of is larger than half of . Third and
lastly, both and could lie to the right of (case
3 in Fig. 5). This occurs if and only if is split at a position
satisfying , i.e., the subinterval of that is
to the left of must be shorter than half of .

Clearly, the above analysis also applies with appropriate mod-
ifications if symbol was split instead of symbol . When all
four possible two-symbol input sequences , , , and

are encoded, the following relationships apply.
1) If (‘ ’ can be either or ), then

either was split with or was split
with .

2) If , then either was split with
or was split with

.
3) If and , then

was split, and .

TABLE II
EXAMPLE OF INPUT SEQUENCE AND OUTPUT

CODEWORD OF INTERVAL SPLITTING AC

TABLE III
AVERAGE NUMBERS OF INPUT SEQUENCE TO FIND WHICH SYMBOL

IS SPLIT FOR THE FIRST SYMBOL FOR INTERVAL SPLITTING AC

4) If and , then was
split, and

.
Thus, by trying only four two-symbol input sequences, the

attacker can significantly reduce the possible split locations.
By encoding more and longer input sequences, the attacker can
gradually narrow the range of possible key sequences and even-
tually determine the full key.

In the above, it was assumed that an attacker has the flexibility
to arbitrarily choose the input sequence length . However,
even if the interval splitting AC is designed to require inputs
with minimum size much greater than 2, a generalized version
of the above approach can be used. If an attacker can find three
input sequences , , and in which the first symbol of
and is and the first symbol of is , and that lead to code-
words , this reveals that interval
is split when encoding the first symbol. In addition, because the
left of the two or interval boundaries corresponds
to the split position as in Fig. 2, and is identified by the key, the
split position must be between and . By applying
more inputs, the possible range of the split position locations can
be narrowed until corresponding key for the first symbol can be
identified. The split position and corresponding key information
for the subsequent symbols can be identified similarly.

Consider the example of an input sequence length
and a key precision of bits/symbol. As noted earlier, in
this case, key locations are equally spaced in each of the eligible
splitting intervals. When , key locations are related
to three-bit binary keys through for

. The relationship between and an absolute position
in [0,1) is then

(2)

Table II gives an example of input and output pairs with
and key locations defined as above. Since
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TABLE IV
EXAMPLE OF INPUT SEQUENCES AND OUTPUT CODEWORDS OF INPUT PERMUTATION WITH INTERVAL SPLITTING AC (N = 16)

, the fact that an interval corresponding to is split is
identified. By using the fact

, the key location for the first symbol must lie between
and . From (2), possible

values of in interval are 0.0833, 0.25, 0.417, and 0.583.
Therefore, the key location must be 0.25, and corre-
sponding key bits can be identified as 001.

Table III presents the results of experiments examining the
number of input sequences that need to be tried by an attacker
to reveal which symbol is split when encoding the first symbol.
The table considers several different combinations of input
length and key precision . One thousand randomly chosen
key sequences were used to obtain the results in each row of the
table. Most notably, the median number of trials does not grow
with either or , though the average and maximum number
grow with key precision. This means that some key sequences
become stronger against this form of attack as increases
but half of the key sequences are weak regardless of or .
Furthermore, the use of very large keys would involve overhead
that would counter the compression goals of the system.

While the median is an important statistic in examining the
vulnerability of randomly selected keys, the information in the
table also indicates that careful selection of keys can signifi-
cantly increase the barriers to an attacker. In particular, while
the median values are low and relatively consistent across dif-
ferent values of and , the maximum values are many or-
ders of magnitude larger than the median, and also suggest a
general correlation between increased or and increased
robustness. Further examination of the data used to generate the
entries in Table III shows that the number of trials needed is
highest when the keys are chosen near the edges of the inter-
vals. In addition, greater key precision allows placement of keys
closer to the interval edges, thus explaining the growth in max-
imum values with . Thus, increased security against an at-
tacker using random key choices would be obtained by using
edge-adjacent keys. That said, it should also be noted that a
savvy attacker could expect keys to be preferentially located
near edges, and could bias a search with that information. The
specific advantages that could be gained over a purely random
search are of course a function of the search strategy, of which
there are an enormous number of possibilities.

As the above discussion illustrates, the primary vulnerability
of interval splitting AC alone lies in the ability of an attacker
to observe the exact correspondences between the input to the
AC and the output bitstreams. In particular, examination of the

ordering of codewords provides partial information on the or-
dering of , as determined by the key. Because attacker
can select arbitrary symbol sequences, and because the length
of the intervals of shrinks exponentially as the number of
symbols in increases while the possible split positions have
a fixed resolution, key information can be revealed.

B. Permutation in Combination With Interval Splitting AC

Permutation offers a simple and powerful way to increase
robustness without incurring a compression efficiency penalty.
Permutation alone is well known to furnish poor encryption.
However, when used in combination with an interval splitting
AC, the ability to construct attacks becomes severely compro-
mised. We consider two permutations: the first applied at the
input on the string of input symbols and the second applied to
the output bitstream.

Consider first an input permutation. An attacker wishing to
compromise this system faces an initial challenge to determine
the permutation. One way to accomplish this is to first encode
a sequence containing only ’s, and then to encode a series
of sequences of the same length, but containing exactly one

. Table IV provides an example of such an attack. The first
column gives the input sequence and the second column gives
the sequence after permutation. The third and fourth columns
are the encoder outputs expressed in binary and equivalent dec-
imal form respectively. The final column
gives the distance between the decimal location for the code-
word due to the all sequence and codewords resulting from in-
puts containing only one . The table is sorted in the ascending
order according to this distance. In general, the closer the
lies to the end of the sequence, the smaller its distance will be
from the all ’s output. Because of the interval splitting, the
correspondence is not strict, as illustrated in this example by the
outputs due to and . However, given enough trials, these
general correlations can enable an attacker to infer the permu-
tation used to obtain the second column of the table from the
first, and once the permutation is decoded, the interval splitting
locations can be determined using the procedures discussed in
the previous section.

Now consider a system in which there is no input permu-
tation, but in which an output permutation is applied. Such a
system can be attacked by examining information regarding
the number of zeros and ones relative to the overall codeword
length. As illustrated in Fig. 2, at each encoding step only one
symbol is split. In an interval splitting arithmetic coder, one
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TABLE V
EXAMPLE OF AVERAGE PERCENTAGES OF MAJORITY BITS

FOR THE CASE N = 16, N = 8, AND N = 3

output codeword will be either the all-zeros or the all-ones
sequence. This occurs because when a symbol is split, the two
resulting subintervals corresponding to the symbol are pushed
to edges of the interval in the previous step. Therefore, the
leftmost interval associated with the all-zeros codeword or
the rightmost interval associated with the all-ones codeword
always correspond to the one possible input sequence (the “split
symbol sequence”) which consists of all the split symbols. If
an attacker succeeds in finding this sequence, then information
about split locations is revealed.

An attack utilizes the knowledge that codewords for input
sequences which have the same leading symbols as the split
symbol sequence start with many zeros or ones. For ex-
ample, assume that the possible encoding intervals associated
with are decimal [0,0.0010) and [0.9998,1).
Then, before the output permutation, binary codewords cor-
responding to inputs starting with start with
at least nine zeros or 12 ones. Output permutation will move
these zeros or ones to other locations in the output codeword,
but their number will remain fixed. Thus, an attack can use
the following steps.

1) Choose plaintexts which vary in the first symbols and
are fixed as for the remaining symbols. Obtain
codewords corresponding to the plaintexts.

2) Calculate the percentage of majority bits in each codeword.
For example, 70% of the bits in the sequence 1100111101
are 1. Obtain an average of the majority bit percentages
over input sequences having the same first , where

and can be determined by trial and error.
3) Determine the first symbols of the input sequence by

selecting symbols having the maximum average.
Table V gives an example of average percentages of majority

bits for the case , , and . For the
first search, inputs from
to are encoded. Then, data from the
32 codewords whose inputs have the same three starting
symbols, but differ in the subsequent five symbols, are av-
eraged. For instance, 65.5%, in the first column of the row
labeled in the table, is obtained by averaging the per-
centages of majority bits over codewords corresponding to

. Since this
is the maximum among all entries in the first column, in the
second searching pass, the first three symbols are fixed at

, and the process is repeated, this time with the
window lying from the fourth to eleventh symbols and the

window comprising the fourth, fifth, and sixth symbols. This
gives a maximum as shown in the table for sequence .
The window is then moved three symbols to the right, and a
third search is performed, giving a maximum at . There-
fore, plaintexts starting with are chosen for
the next step. Since the first nine symbols are fixed and the
total sequence length is 16, only possible symbol
sequences remain, and one of these will generate the all-zeros
or all-ones codeword. In this example, the input corresponding
to the all-zeros codeword, ,
is identifiable after encoding 892 plaintexts (input sequences).
In general, the number of plaintexts needed is approximately

. Both the search complexity and the
reliability of the result increase with .

The input leading to the all-zeros or all-ones sequence is the
split symbol sequence, and thus contains information about the
interval splitting key. From this attack, it is very hard to directly
obtain the codeword permutation key, which is generated from
an input key sequence by XOR operations as in (1). However,
because split location keys are also generated from the input key
sequence, the split symbol sequence is related to XOR results of
several bits of input key sequence. Therefore, an attacker can
use this information to reduce the number of possible input key
sequences that must be tried.

Utilizing both an input and an output permutation gives a
system that defeats both of the attacks usable on systems with
only one permutation, and appears to be robust against chosen
plaintext attacks. The attacks available on an interval splitting
AC alone and on a system with input permutation followed by
interval splitting AC cannot be applied because codeword com-
parisons are meaningless due to codeword permutation. The at-
tacks used for codeword permutation cannot be applied because
an attacker needs to find leading symbols first, but symbol order
is scrambled by the input permutation.

IV. IMPLEMENTATION COMPLEXITY

The implementation complexity of the permutation-based
system in Fig. 1 is dominated by the interval splitting arithmetic
coder because permutations and key scheduling utilize very
basic bit operations. Permutations are implemented through
circular shifts which are easily implemented in either hardware
or software. The key scheduler employs XOR operations and
can operate in one of two modes. First, a key sequence can be
generated once before encoding begins and used for multiple
input blocks until a new input key sequence is sent to a decoder.
Alternatively, different keys can be generated for each input
block. This second approach involves slightly more computing
power and increases the burden on a potential attacker.

An interval splitting AC can be implemented utilizing tech-
niques similar to those used in traditional arithmetic coding
and can benefit from the same optimizations for speed, finite
precision, etc. Examples of such techniques include simple
table lookups used for performing the computationally critical
operations of interval subdivision and probability estimation
[13], mechanisms that improve throughput by allowing renor-
malization to occur during the arithmetic operations [14], and
encoding of two or more symbols in a single cycle [15]. All
these optimizations can also be applied to an interval splitting
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AC. The main difference lies in the number of intervals, which
approximately doubles (the precise number is one fewer than
twice the original number, because the interval at the center
of the [0,1) range is not split), which doubles the amount of
memory needed to store interval start and end locations. In
addition, renormalization must utilize both the interval length
and the key, introducing an additional multiplication, though as
with traditional arithmetic coding, faster algorithms that replace
the multiplications with simpler operations can be introduced
[16], [17].

At some cost in security, the complexity could be reduced by
replacing the interval splitting AC in Fig. 1 with the RAC coder
in [7]and [8]and leaving all other permutation steps in place as
in the figure. The implementation complexity of RAC is only
marginally higher than traditional arithmetic coding, since the
main added task of tracking interval swaps is very simple, and
the number of intervals is not increased. However, the security
of RAC is lower because the key sequence controls only the or-
dering of intervals while in interval splitting AC it controls the
ordering and the length of intervals. For example, if an input
corresponding to an all-zero sequence is revealed in RAC, an
attacker then knows all information of intervals. For the same
condition in interval splitting AC, the attacker still needs to iden-
tify split locations. Moreover, RAC becomes simple XOR when

. Hence, if an attacker has the ability to
control the input symbol probabilities assumed by the RAC, the
attacker can easily obtain permutation information. As noted
earlier, however, the RAC was never designed for security, so
it is unsurprising that it is less robust than the interval splitting
AC, which was designed with security as a specific goal.

Given that the goals of the system described here are both
security and compression, it is relevant to consider a system
consisting of a traditional arithmetic encoder followed by AES,
which of course would also deliver security and compression.
Since AES was designed for efficient hardware implementa-
tion, it is extremely fast when it is fully pipelined in hardware
[18]. However, because a traditional arithmetic coder needs to
work sequentially—i.e., the results of encoding earlier sym-
bols are necessary before encoding of later symbols can be per-
formed—the AC cannot easily be parallelized and becomes the
bottleneck in a combined AC/AES system. In addition, number
of transformation steps is significantly higher in AES than in
the permutations of the system of Fig. 1. AES consists of 40
sequential transformation steps composed of simple and basic
operations such as table lookups, shifts, and XORs. For a block
size of , these steps require a total 19 shifts (assuming
parallel operations when possible), use of 336 bytes of memory,
and the XORing of approximately (the exact requirement is data
dependent) 608 bytes of data. In contrast, for an interval splitting
arithmetic coder operating on an input of size 128, the permuta-
tions in Fig. 1 require six shifts (again assuming parallel opera-
tion when possible), a maximum of 40 bytes of memory, and no
XOR operations. Moreover, while interval splitting AC has more
complexity than traditional AC as described previously, calcula-
tions of two subintervals can be performed in parallel and each
calculation is similar to its equivalent in a traditional arithmetic
coder. Thus, in terms of throughput the system in Fig. 1 can be
faster than traditional AC followed by AES because in Fig. 1 the

TABLE VI
COMPARISON OF CODE LENGTHS AS A FUNCTION OF SEQUENCE LENGTHN

sequential steps are fewer and are performed during the arith-
metic coding.

Another advantage lies in the flexibility with respect to
codeword lengths. Although the average length of codewords
is easily determined from the entropy, in practice any given
input sequence realization will not typically possess precisely
“average” characteristics, and in many environments the prob-
ability model itself is wrong. So the assumed probabilities
internal to an AC differ from those actually provided as inputs
even when many input symbols are encoded. This could be
problematic when AC is followed by AES because the block
nature of AES could require zero padding and an accompanying
loss of overall efficiency. This problem could be circumvented
by replacing AES with a stream cipher, which by definition
places no constraints on sequence length. However, stream
ciphers with comparable complexity to AES are not as strong
as AES, meaning that the elimination of the block processing
requirement would come at some cost to overall security.

V. EXPERIMENTAL RESULTS

The permutation steps involve no cost to coding efficiency, so
the only efficiency differences with respect to traditional arith-
metic coding arise due to the interval splitting, which as dis-
cussed earlier, results in slightly increased bounds on codeword
length. Table VI shows the results of encoding input sequences
with length and 1000 symbols and allows an efficiency
comparison in absolute and relative terms with traditional arith-
metic coding. The upper half of the table considers the case
where , and the lower half of the table considers
the case where . The code lengths shown in the
table are averages based on simulations using 1000 random se-
quence realizations. Since the exact length of the output when
interval splitting is used depends not only on the input data but
also on the specific sequence of split locations used, the column
labeled “Interval Splitting” gives the mean and standard devi-
ation of the code lengths based on randomized key locations
for splitting. The rightmost column in the table gives the corre-
sponding mean and standard deviation for the efficiency penal-
ties. As expected, the penalty and the variance of the penalty
quickly become very small as sequence length increases.

Fig. 6 presents results in graphical form for input sequences
with and . As with the data in Table VI,
the curves in the figure are averages based on simulations using
1000 random sequence realizations. The results confirm that the
efficiency penalty in percentage terms becomes smaller with in-
creasing , falling to approximately 0.6% for and
to 0.007% for when . In absolute
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Fig. 6. Efficiency penalty of interval splitting method as a function of sequence
length N .

terms, the efficiency penalty with respect to traditional arith-
metic coding is well under one bit, and typically closer to 0.5 bits
(for the entire sequence of symbols). In addition, it should
also be noted that the modest efficiency penalty is the cost of
obtaining secrecy. It arises because of the disjoint nature of the
intervals, which in turn contributes to the secrecy since it intro-
duces a perturbation on the traditionally more direct association
between symbol string probability and the length of the resulting
representation.

Interesting areas of possible extension of this work include
generalization to -ary alphabets, use of adaptive probability
tables and context-based coding. For the special case of first-
order binary coding, the coder presented here can be used if
the input sequence is first differentially processed to create a
sequence that expresses data changes (e.g., 0 if the current bit
is the same as the previous bit, 1 if the current bit differs from
the previous bit). While this causes some efficiency loss to the
extent that the transition probabilities may be asymmetric, in
practice the method can work quite well. As an example, we
performed compression using interval splitting AC on the “pic”
binary image file available in the Calgary Corpus [19]. Zeros
in this image occur with probability 0.923, corresponding to a
zero-order “entropy” rate of 0.3915 bits per image bit. When
coded using a transition-based interval splitting AC, however,
the coding achieved is a rate of 0.1546 bits per image bit (in
other words, a compression ratio of 6.47 : 1), which is within
1.4% of the true first-order entropy, and within 1.4% of the result
noted in [19].

More generally, utilizing full-context information would
require modifications to the encoder and reconsideration of
the input permutation as that permutation can destroy the very
dependencies that are the basis for contextual knowledge. One
option would be to process the data in blocks sufficiently large
to preserve context information. Of course, regardless of the
size of the block, the first symbol in the block will be stripped
of any context information. Thus, the tradeoff of block-based
input permutation lies between security, which is weakened
when larger blocks are used, and efficiency, which benefits
from larger blocks because more of the symbols in the block

have full-context information. In the -ary case it may also be
possible to simply dispense with the input permutation when

is reasonably large. This is because when there are many
more intervals, the number of potential split locations is also
larger. For the binary case with an input sequence of length 10,
an attacker can easily examine all possible input sequences,
something which is clearly impossible for a sequence of the
same length when the alphabet size is . Thus, the
sheer number of input possibilities adds to the security, and
would potentially enable the overall system to remain secure in
the presence of an output permutation alone.

VI. CONCLUSION

An arithmetic coder in which the intervals associated with
each symbol combination are split in accordance with a key,
and in which permutations are applied both to input symbol se-
quence and to the output binary sequence, has been presented.
The system offers both compression and security, and thwarts all
known attacks aimed at obtaining information about the input
or output permutation or the interval splitting keys. For each
encoded symbol, a pair of intervals is split, and this split can
occur in parallel. So the throughput can be identical to that of
a traditional arithmetic coder. The permutations add negligible
complexity. The code length increase induced by interval split-
ting is bounded to less than one bit per -symbol sequence,
and in practice the increase is often approximately 0.5 bits per

-symbol sequence. In percentage terms this efficiency penalty
becomes vanishingly small as increases. Thus, for sequences
of reasonable length, the efficiency cost for obtaining security
is negligible. While we have focused on the static binary case
for simplicity, the methods presented here can also be applied
to -ary and/or adaptive arithmetic coding.
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